Clustering in Massive Data Sets
نویسنده
چکیده
We review the time and storage costs of search and clustering algorithms. We exemplify these, based on case-studies in astronomy, information retrieval, visual user interfaces, chemical databases, and other areas. Theoretical results developed as far back as the 1960s still very often remain topical. More recent work is also covered in this article. This includes a solution for the statistical question of how many clusters there are in a dataset. We also look at one line of inquiry in the use of clustering for human-computer user interfaces. Finally, the visualization of data leads to the consideration of data arrays as images, and we speculate on future results to be expected here. `Now', said Rabbit, `this is a Search, and I've Organised it {' `Done what to it?' said Pooh. `Organised it. Which means { well, it's what you do to a Search, when you don't all look in the same place at once.' A.A. Milne, The House at Pooh Corner (1928) { M.S. Zakaria
منابع مشابه
Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملAlgorithms for Data Mining
Data of massive size are now available in a wide variety of fields and come with great promise. In theory, these massive data sets allow data mining and exploration on a scale previously unimaginable. However, in practice, it can be difficult to apply classic data mining techniques to such massive data sets due to their sheer size. In this thesis, we study three algorithmic problems in data min...
متن کاملAlgorithms for data mining
Data of massive size are now available in a wide variety of fields and come with great promise. In theory, these massive data sets allow data mining and exploration on a scale previously unimaginable. However, in practice, it can be difficult to apply classic data mining techniques to such massive data sets due to their sheer size. In this thesis, we study three algorithmic problems in data min...
متن کاملScalable Ensemble Information-Theoretic Co-clustering for Massive Data
Co-clustering is effective for simultaneously clustering rows and columns of a data matrix. Yet different coclustering models usually produce very distinct results. In this paper, we propose a scalable algorithm to co-cluster massive, sparse and high dimensional data and combine individual clustering results to produce a better final result. Our algorithm is particularly suitable for distribute...
متن کاملخوشهبندی خودکار دادههای مختلط با استفاده از الگوریتم ژنتیک
In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999